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Abstract 
This paper is written to evaluate the essential properties of numbers in the realist foundations of 
mathematics. The purpose of the study is to synchronize the achievements of schools of 
mathematics, especially realism (because of its non-vacuous status as well as its acceptance of 
the validity of first-order logic), with the fruitfulness of Peano Arithmetic (PA). The method 
adopted for the study is that of content analysis. It has unfortunately been found in the course of 
the study that realism is limited by its assumption of the validity of referential semantics. Hence, 
in order to avoid the Platonic consequences of its semantics, realism advocates an idea of the 
genetic essence of numbers as cardinals, thereby making the ordinal properties of numbers, 
which are the foundation of the fruitfulness of PA, an accidental product of the arrangement of 
cardinals. As a result, and very painfully, realism was unable to synchronize with PA. 
Keywords: Peano Arithmetic, Realism, Logicism, Empiricism, Semantics, and Number. 

 

Introduction 
The use of the notion of number has 

assumed a normal dimension in everyday 
life. Number and enumeration have 
become so ingrained in human activities 
that their usage hardly gets noticed. Hence, 
what the concept means has been taken for 
granted by mathematicians and non-
initiates alike. Great and fruitful 
mathematical systems have been built on 
this concept without a slight consideration 
of what its referent is. It was not until the 
20th century that philosophers started 
asking concrete questions concerning the 
meaning of the concept. Several responses 
to this question emerged but were 
adjudged unsuccessful. It was Giuseppe 
Peano who developed an axiom system that 
gave scholars insight into what could be the 
real meaning of the notion. The system was 
built on three primitive, undefined notions, 
namely, zero, number, and successor. 

The entities generated by the 
systems as numbers are serial entities with 

ordinal number properties. Hence, 
following Peano Arithmetic, numbers are 
essentially ordinals and become cardinal by 
application. The attraction for Peano 
Arithmetic lies in its mathematical 
fruitfulness, such that there is a branch of 
mathematical logic today called PA, or 
Peano Arithmetic. With such results, the 
paper assumes that PA could be taken as a 
standard for the evaluation of the 
performance of other proposals on the 
meaning of number in the foundations of 
mathematics. The proposal the paper has 
chosen to consider is the realist notion of 
number. Hence, it is the thesis of the essay 
that, following the achievement of 
Giuseppe Peano’s (PA) axiom system, for 
the generation of numbers and its 
attendant mathematical fruitfulness, the 
notion of number is essentially ordinal and 
only cardinal in application. The essay is, 
therefore, purposed to test the realist 
theories of number to ascertain whether 
their definitions of number satisfy the 
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ordinal essence of number as in Peano 
Arithmetic (PA). 
 

The Concept of Realism 
The word "realism" is derived from 

the Latin root "realis," meaning "real." 
Further traces of the etymology of realism 
could be found in the interpretation of 
"res." "Res" is a Latin word often 
interpreted in philosophical literature to 
mean "substance." But the original meaning 
of the word "res" is "thing." Hence, it has 
the philosophical sense of meaning "a 
concrete thing" and "the real." 

Realism originally appeared as a 
word to classify the mediaeval debate on 
the existence of universal objects. 
Consequently, the term "realism" was used 
within the context of the debate to contrast 
the terms conceptualism and nominalism, 
which represented different opinions in the 
debate on the problem of universals. The 
problem of universals involves the 
determination of whether there is a one-to-
one correspondence between common terms 
in the intellect and things in the physical 
world. To this problem, there are three 
traditional divergent responses, namely: 
realism, nominalism, and conceptualism. 
Within the context of this debate, realism has 
been understood in two shades, namely, 
extreme realism and moderate realism. 

Extreme realism, which is most 
often associated with Plato and the 
Platonists, is the argument that there is a 
parallel ontological relation between 
universal terms and actual objects in the 
universe. Consequently, the structure of 
physical objects represents the structure of 
intellectual objects. The argument of 
moderate realism, which is sometimes 
associated with Aristotle, is that universal 
concepts are the result of abstraction from 
physical objects. 
 

Theory of Platonist Mathematical Realism 
Williard Quine has in recent times 

argued that the traditional mediaeval 
controversy concerning the problem of 
universals has resurfaced in discussions in 
the 20th century philosophy of mathematics 
(Quine, 1971, p. 13). According to Quine, 
realism is represented in modern-day 
logicism, while conceptualism is in 
intuitionism and nominalism in formalism, 
respectively (Quine, 1971, p. 14). Quine 
argues that, taking after the realist Platonist 
tradition, the mind can discover an abstract, 
independent realm of truth values. 
Logicism, championed by "Frege, Russell, 
Whitehead, Church, and Carnap, condones 
the use of bound variables to refer to 
abstract entities, known and unknown. . . 
"(1971, p. 14). Thus, they gave birth to a 
long tradition known as "realism" in the 
foundations of mathematics. 

"Platonism is a word that refers to a 
family of doctrines" (Oliveri, 2007, p. 97) 
that believed that mathematical entities are 
not of the external world or mentalities but 
are abstract objects that exist in an abstract 
dimension. Platonism appeared to be based 
on the plausibility of the argument that "…if 
mathematics is a science of "relations of 
ideas" (Hume) or "relations between 
thoughts" (Frege), and not of matters of 
fact, then there is no reason to believe that 
abstract entities such as ideas or thoughts 
can be realised in concrete objects …" 
(Oliveri, 2007, p. 98). Abstract objects must 
remain abstract in their realm. 

Platonism has traditionally held that 
numbers are abstract objects. 
Consequently, Platonists are of the opinion 
that mathematics, as number theory, is the 
study of the properties of numbers or 
present-day sets as abstract objects. The 
science of numbers is analogous to the 
science of physical objects, which studies 
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the concrete perspectives of objects. The 
Platonist can therefore refer to the natural 
number independently and in relation to 
other numbers. In both cases, the 
properties of the number, say 3, will remain 
intact. Each number's unique properties as 
an abstract object determine the number's 
unique relationships to all other numbers. 
These properties and relations are the 
preoccupation of number theory as a 
science. Platonism faces the problem of the 
unity of its referents. For example, Paul 
Benaceraf demonstrated in set theory that 
Zermelo and von Neumann's expression of 
Peano's five axioms would face the problem 
of determining which unique set each of 
them refers to (Oliveri, 2007, p. 279). No 
one has access to the unique set, which is 
the abstract object modelled in all 
circumstances. 

Frege is a notable contemporary 
Platonist. He argues that arithmetic is 
concerned with objects given in our "reason 
and transparent to it" (Oliveri, 2007, p. 
100). Frege believed that we can define the 
identity of numbers within propositions. 
Frege rejected any condition of expression 
within which numbers are treated as 
predicates and not as objects. 

By making numbers extensions of 
concepts, Frege gave them a life of their 
own and therefore conferred on them the 
status of objects. Numbers, according to 
Frege, occupy the third realm of ontology: 
"...thoughts are neither things in the 
external world nor ideas." "A third realm 
must be recognized" (Frege, 2007, pp. 17–
18). Frege believes that objects in this realm 
have something in common with ideas (i.e., 
the fact that they cannot be perceived by 
the senses and are not the content of any 
person’s consciousness). Consequently, 
they are true independently of whether 
someone acknowledges them or not, as 

thoughts need no owner (Frege, 2007, p. 
17–18). Thoughts are analogous to planets; 
whether they are discovered or not, they 
are in interaction with other planets (Frege, 
2007, p. 18). Just like the planets, we 
discover thoughts, but we do not create 
them. 

Another prominent Platonist realist, 
Kurt Gödel, has argued that "... 
mathematical propositions... express 
properties of concepts" (Gödel, 2016b, p. 
360). The argument leads to some firm 
realist ontological commitments, such as 
the fact that the properties of those 
concepts are as objective and independent 
of our choice as the physical properties of 
matter (Gödel, 2016b, p. 360). Gödel 
opposes every attempt to assume that the 
objects considered in mathematics, such as 
concepts, sets, and propositions, are man-
made. This sort of thinking is, for him, 
wrong. He believes that: "… these concepts 
form an objective reality of their own, 
which we cannot create or change, but only 
perceive and describe" (Gödel, 2016a, p. 
320). At the end of his Gibbs lecture, Gödel 
made an unreserved commitment to the 
Platonism of mathematical truths. 

According to Gödel, the legitimacy 
of mathematical knowledge is only tenable 
as Platonism (Gödel, 2016a, pp. 322-323). 
Platonism was defined by him as "the belief 
that mathematics described a non-sensual 
reality that exists independently of both the 
acts and dispositions of the human mind 
and is only perceived in part by the human 
mind" (Gödel, 2016a, pp. 323–323). The 
entities discussed in mathematics belong to 
the second level of abstraction. First, by 
abstracting from individuals, we get their 
relations or concepts. Second, mathematics 
is concerned with the general properties of 
these concepts, and this belongs to the 
second level of abstraction. Gödel argues 
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that we attain knowledge of this process 
through what he called "mathematical 
intuition." 
 

Theory of Aristotelian Mathematical 
Realism 

Aristotle was not a philosopher of 
mathematics par excellence, but his idea of 
mathematical objects is realist, and this 
idea has influenced the philosophy of 
mathematics to a great extent and could be 
referred to as Aristotelianism. Aristotle 
understood mathematical entities to be the 
objects of perception, not independently 
but as abstractions from real things. 
Mathematical entities are, for Aristotle, 
objects of intelligence achieved through 
abstraction from perception. Oliveri (2007) 
presents his interpretation of Aristotle as 
follows: "...mathematical entities exist as 
intelligible possibilities, which are attributes 
of the object of perception, and whose 
knowledge can be attained by 
abstraction…" (p. 84). Mathematical entities 
are therefore attributes of things, not the 
things themselves. The Aristotelian 
approach to realism is perception and then 
abstraction. Its perceptual orientation 
excludes the notion of infinity from actual 
mathematics. Believing that infinity is at the 
heart of much of contemporary 
mathematics, it would be right to conclude 
that Aristotle’s realist account is 
unsatisfactory. 

Writers who have followed 
Aristotle’s realism are J. S. Mill and Donald 
Gillies. Gillies (2000) argues that natural 
numbers and sets exist in the external 
world. The argument is predicated on the 
fact that Aristotle's acceptance of natural 
numbers as the properties of sets points to 
the fact that since sets are of the external 
world, natural numbers too are. Donald 
Gillies, falling back on the realist 

indispensability thesis of Quine and 
Putnam, argues that the infinite set is 
physically real if it is a component of a 
confirmed physical theory. On the same 
vein, he submits that Cantor’s concept of 
the aleph (i.e., a number greater than 2N0) is 
non-physical and therefore metaphysical, 
since this concept lacks access and 
statements about it have no truth value. 
Hence, the truth value of an existential 
statement about mathematical entities is 
the truth value of any physical theory within 
which those entities are found. So, whether 
the mathematical entities named in a 
theory exist or not is dependent on whether 
the theory has been confirmed or not. If the 
theory is confirmed, then the entities exist 
in the physical world as properties of a set; 
otherwise, they do not exist in the exact 
relation stated by the theory. This leads to 
the realist arguments concerning the nature 
of mathematical statements, or what could 
be referred to as a "statement of number" 
(Gillies, 2000, p. 77). 
 

MATHEMATICAL EMPIRICISM AS REALISM 
In the foundations of mathematics, 

realism of number is articulated by two 
major schools of philosophy of 
mathematics, namely empiricism and 
logicism. The discussion of their main 
theories and notions of number follows. 

Foundational research is hooked up 
with genetic investigations of the existence 
and ontological status of theoretical 
entities. Such a genetic approach to 
knowledge is what empiricism represents. 
Empiricism is a theory of the legitimacy of 
knowledge and its object. As such, it is an 
epistemological movement, according to 
which: 
1. Nothing around us can be known to be 

real unless its existence is revealed in 
or inferable from information we gain 
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directly in sense experience or in 
introspection of our subjective states, 
or latter recall, and 

2. Genuine, intelligible differences in our 
claims about this world express this 
knowable difference in experience 
(Hunter 110). 

 

The thesis statement of empiricism 
is that experience is the foundation of all 
knowledge. The movement found its major 
proponents in the seventeenth century in 
the hands of John Locke, George Berkeley, 
and David Hume. It has also won the 
admiration of several other scholars, like 
John Stuart Mill, Bertrand Russell, Rudolf 
Carnap, Williard Quine, etc. Among these 
latter scholars, Mill, Russell, and Quine 
contributed to the foundations of 
mathematics, but it was only Mill who went 
empiricist. 

John Stuart Mill was a naturalist in 
his approach to the theory of knowledge. 
From a thoroughly naturalistic viewpoint, 
Mill understood the human person as part 
of the natural causal order studied by 
science. He thought that this had 
implications for knowledge: if minds are a 
part of nature, then no knowledge of the 
world can be a priori. Any assertion with 
real content must have an empirical basis. 
Mill thought that knowledge remained 
possible only on such a basis (Skorupski, 
1993, p. 279). 

This epistemology was extended to 
the foundations of mathematics, where he 
argued that mathematics is known 
inductively through experience (Resnik, 
1980, p. 137). Thus, Mill contended that 
mathematical doctrines as well as all so-
called deductive reasoning are in fact 
inductive. They are genetically rooted in the 
epistemology of physical objects (reality). 

This epistemological conviction 

about the nature of mathematical theory 
caused Mill to reject both the 
conventionalist and the stipulationalist 
models of mathematical symbolism. On the 
contrary, he argued that mathematical 
theories refer to actual existence, and their 
definitions assert such existence. Thus, the 
postulates of arithmetic and geometry are 
empirically founded. Whereas the latter are 
approximately true of actual physical 
objects, the former are directly empirical. In 
his System of Logic (2006), Mill argues that 
"three is two and one" could be confirmed 
by observation and not by definition as with 
geometrical concepts (Book 1, Sec. 5, Para. 
2). This does not mean that Mill attributes 
stipulationalism to geometry. It is Mill’s 
conviction that, even though geometrical 
truths lack the absolute necessity of 
deductive theorems, they possess a relative 
empirical necessity. 

Against philosophers and 
mathematicians like Leibniz, who thought 
that "arithmetic may be reduced via 
definition to mere identities," Mill taught 
that, in as much as true definition is not just 
verbal or abbreviations, arithmetic cannot 
in any way be reduced to mere identities 
(Resnik, 1980, p. 147). 

Mill founded arithmetic in the 
empirical world, arguing that abstract 
algebra has some reference at each of its 
steps to real facts. Thus, all numbers, 
according to him, must be numbers of 
something. Ten is a number of bodies, 
sounds, pounds, etc. (Book 2, Sec. 4, Para. 
2). As number of things, he understood it as 
a predicate term. Hence, we have ten 
bodies, ten sounds, ten pounds, etc. The 
numerals only give these predicates their 
perfect generality. Within this generalist 
understanding, ten denotes the particular 
entities to which it applies (i.e., all parcels 
or aggregates of physical objects). It is a 
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property shared by all such aggregates. 
Mill’s argument makes numbers appear to 
have discoverable and directly observable 
properties (Resnik, 1980, p. 149). 

Arithmetical propositions are 
therefore not about abstract identities. Mill 
refers to them as "statements of the result 
of arithmetic operations; statements of one 
of the modes of formation of a given 
number" (Book 3, Sec. 24, Para 5). In this 
way, Mill rooted numbers in the structure 
of empirical aggregates or performed 
operations on such a structure. Hence, he 
defined numbers as ".... some property 
belonging to the amalgamation of things, 
which we call by the name; and that 
property is the characteristic manner in 
which the amalgamation is made up and 
may be separated into parts" (Book 3, Sec. 
24, Para 5). The impression is completely 
graphic. A number is discovered not by 
counting but by mere observation. As a 
result, it has the appearance of being blue 
or white. 

Mill’s empiricist conception of 
number would no doubt reduce talk about 
ordinals to discourse about mere 
arithmetical contingencies. Hence, 
ordinality or seriality would be properly 
inessential to the existence of numbers. But 
the successor function makes it rather 
fundamental to Peano’s Arithmetic. Even 
though Mill sometimes argues for the 
generation of numbers from series (i.e., by 
adding), such an idea is not basic to his 
thesis because he already allows for a non-
serial possibility of numbers within the 
aggregate. Besides, he restricts the idea of 
serial analysis of numbers to education. He 
writes as follows: "We arrive at the 
conclusion (as all know who remember how 
they first learned it) by adding a single unit 
at a time; 5+1 = 6, therefore, 5+1+1 = 6+1 = 
7; and again, 2 equals 1+1, therefore, 5+2 = 

5+1+1 = 7" (Book 3, Sec. 24, Para. 5). So, the 
idea of a series is a function of creative 
operations with aggregates. Here, as in 
most foundations of mathematics, numbers 
lose their essence as ordinals and exist 
essentially as cardinals. 
 

Logicism as Realism 
The origin of the logicist realist 

tradition could be traced to G. Cantor. 
Cantor’s reputation as a brilliant 
mathematician is rooted in his introduction 
of real numbers and the creation of set 
theory to handle problems associated with 
them. His main thesis on the theory of 
numbers is based on his theory of sets. One 
of the major relations in Cantor’s set theory 
is the relation of equivalence. It was on the 
basis of this relation that he defined the 
cardinal number as follows: "Two sets S and 
T are said to be equivalent if there exists a 
one-to-one correspondence between them, 
i.e., if there is some relation such that each 
element of S is correlated by the relation 
with one and only one element of T 
correlated with it by the relation" (Kneale 
and Kneale, 1962, p. 439). Thus, Cantor 
defined the cardinal number or the power 
of a set as that which it has in common with 
all equivalent sets but with no others 
(Kneale and Kneale, 1962, p. 439). At the 
general level, the cardinal numbers are 
perceived as independent and are said to 
form the positive integers. 

The above interpretation of integers 
as cardinal numbers of classes made the 
ordinal numbers dependent on the 
cardinals. Cantor therefore argues that all 
classes are well ordered. The well-ordering 
of a class is the foundation of a series or 
progression. Hence, he argues that ".... we 
can make each cardinal, which belongs to a 
well-ordered series, correspond to one and 
only one cardinal. Cantor assumes as an 
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axiom that every class is the field of some 
well-ordered series and deduces that all 
cardinals can be correlated with ordinals.... 
(Russell, 1992, p. 322). 

Cantor came so close to articulating 
the assumptions of this essay: that the 
distinction between cardinal and ordinal is 
ill-founded; that cardinals are ordinals 
understood independently of their genesis; 
that genetically, all numbers are ordinals 
and only cardinals when viewed as 
magnitudes. Surprisingly, Cantor never 
made such assertions. He instead asserted a 
distinction between cardinals and ordinals, 
thereby transforming ordinals into 
functions of cardinal arrangement. 
Consequently, Cantor opined that the 
fundamental property of number is 
cardinal. Unfortunately, unless a function 
concerning magnitude or any other 
property is defined on them, cardinal 
numbers lack the natural serial 
characteristics to establish succession in 
progression. 

Another very prominent logicist is 
Gottlob Frege. The achievements of Frege 
in the foundations of mathematics marked 
the next great achievement after George 
Boole’s algebra of logic. Whereas the latter 
sought to use mathematical apparatus in 
the analysis of logic, the former set out to 
prove that arithmetic was identical with 
logic. This implied that Frege would show 
how the ideas in arithmetic are only 
definable in terms of logic (Kneale and 
Kneale, 1962, p. 435). 

Frege however, recognized that the 
old logic or any of its further independent 
developments was inadequate to bear the 
burden of his programme. As a result, he 
combined the accomplishments of Boole 
and the old logic with his newly constructed 
logic to establish a calculus of general 
reasoning. The kind anticipated by Leibniz, 

which, according to him, would free the 
human mind from the burden of natural 
language. He published the new theory in 
his Concept Script (Kneale and Kneale, 1962, 
p. 435). The development of notation in the 
Concept Script had two intentions: 
simplicity and demonstration, such that the 
laws that govern inferences in arithmetic 
are shown to be derived laws of logic 
(Macbeth, 2005, p. 17). "The goal is a 
system, a complete and adequate 
axiomatization of arithmetic; everything on 
which arithmetic proof depends is to be 
stated in advance, either as an axiom or a 
definition. . . ."(Macbeth, 2005, p. 17). 

In this way, Frege claimed to have 
reduced the laws of arithmetic to those of 
logic, calling statements of both systems 
generalised conditions. Thus, numbers, laws 
of numbers, and operations on numbers 
would have logical definitions in his system. 
Frege began his logical analysis of 
mathematics by recognising the legitimacy 
of Leibniz’s, Mill's, and others' arguments 
that the natural numbers greater than one 
are defined by reference to their 
predecessors (Kneale and Kneale, 1962, p. 
455). As a result, "2 = 1 + 1," "3 = 2 + 1," and 
so on. But he remarked that such a position 
is incomplete so long as the number 1 and 
the notion of increasing by 1 are themselves 
undefined (Kneale and Kneale, 1962, p. 
454). He also drew attention to the need for 
general propositions in order to develop 
arithmetic. Nevertheless, Frege criticised all 
views of numbers that reduced them to 
abstractions from physical objects. He 
therefore argued that "number is not 
abstracted from things in the way that 
colour, weight, and hardness are, nor is it a 
property of things in the sense that those 
others are" (Frege, 2007, p. 45). 

Again, "number is not anything 
physical, nor is it anything subjective (an 
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idea). Number does not result from the 
annexing of thing to thing . . . . " (Frege, 
2007, p. 45). According to him, numbers can 
only be assigned to concepts as their 
properties and not to objects. He writes the 
following: “This is perhaps clearest with the 
number 0. If I say, "Venus has 0 moons," 
there simply isn't any moon or 
agglomeration of moons for anything to be 
asserted of, but what happens is that the 
concept "moon of Venus" is given the 
property of including nothing under it” 
(Frege, 2007, p. 46). But Frege does not 
consider this definition satisfactory. 
According to him, a number as such is not a 
concept, even though in ordinary speech it 
is used as an adjective. It is not a property 
that any particular thing could be said to 
possess. "A number is not a concept but an 
object" (Kneale and Kneale, 1962, p. 457). 

Frege does not also accept the view 
that a number is the common property of 
sets of the same size. Cantor championed 
this view. According to Kneale and Kneale 
(1962), the view has the benefit of 
simplicity (p. 458). Nevertheless, Frege 
argues that: 

In the proposition "the number 0 
belongs to the concept F", 0 is only 
an element in the predicate (taking 
the concept F to be the real subject). 
For this reason, I have avoided 
calling a number such as 0 or 1 or 2 
a property of a concept. Precisely 
because it forms only an element in 
what is asserted . . . . "(2007, p. 57). 

 

Consequently, Frege believes that 
the individual number shows itself for what 
it is: a self-subsistent object (2007, p. 57). 
This object-oriented definition of "number" 
contradicts Frege's original argument, 
which identified the number as an adjective 
in natural language. He appears to accord 
more importance to the abstract existence 

of numbers in arithmetic than to their 
existence in daily usage. 

Nevertheless, Frege’s definition of 
numbers is tied to his use of concepts. The 
definition uses the idea of the same number 
between two or more concepts to 
investigate the meaning of number. 
Consequently, Frege states that "the 
number that belongs to the concept F is the 
same as the number that belongs to the 
concept G" (Kneale and Kneale, 1962, p. 
457). Frege wrote this way to avoid such a 
single statement as the number, which 
belongs to the concept "F." But if one were 
to examine the second case critically, it 
would be discovered that the only 
difference between them is their 
comparison in the previous instance. 
However, Frege argues that it was 
fashionable to write like that in his time 
(Frege, 2007, p. 63). Writers such as David 
Hume, George Cantor, and Bertrand Russell 
wrote in that manner. What such an 
approach purports is the idea of the 
independent existence of numbers. 

To fulfil the objective, Frege built his 
definition on the basis of one-to-one 
correspondence between concepts, with 
number as the resultant object of the 
relationship. He argues that the objects 
falling under the two concepts F and G may 
be said to be correlated with each other by 
the relation ф if (i) every object falling 
under the concept F stands in the relations 
ф to an object falling under the concept G, 
and (ii) for every object falling under the 
concept G, there is an object falling under 
the concept F that stands next to it in the 
relation ф. (iii) that for any x, y, and z, if x 
stands in relation ф to y and also to z, then 
y and z are the same, and (iv) that for x, y, 
and z, if x and y both stand in relation ф to 
z, then x and y are the same (Kneale and 
Kneale, 1962, p. 460). 
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On the basis of the presentation, 
Frege builds the following three definitions: 

1. ‘The concept F is like-numbered with 
the concept G’ is to mean the same as 
‘there exists a relation ф which 
correlates the objects falling under 
the concept F on one-to-one with the 
objects falling under the concept G.’ 

2. The number which belongs to the 
concept F is the intension of the 
concept ‘like-numbered with the 
concept F.’ 

3. ‘n is a number’ is to mean the same as 
‘there exists a concept such that n is 
the number which belongs to it’ 
(Frege, 2007, p. 72) 

 

Frege believed that his definition 
has twofold achievements: it defines 
numbers and overcomes the use of the 
circular concept of a one-to-one relation. 
Hence, he argued that the definition was 
logical. Kneale and Kneale (1962) present 
this argument in the following way: "... 
concepts are to be called like-numbered if 
their extensions are equivalent according to 
the technical terminology of the theory of 
sets" (p. 460). The argument of Kneale and 
Kneale (1962) implies that Frege’s definition 
of number is identical with Cantor’s notion 
of cardinals. 

The idea of numbers as the "number 
concept" is central to Frege’s analysis. Even 
when he transferred the whole analysis into 
a logical presentation of series, which is 
necessary for the justification of arithmetic, 
he still retained, as essential, the notion of 
"concept number," which is identified with 
Cantor’s idea of cardinal. Whatever the fate 
of Cantor’s cardinals is in this essay, it 
therefore applies to Frege’s numbers. His 
series consists of the following: 
       0 is a number belonging to the concept 
"not identical with itself." 

1 is a number belonging to the concept 
"identical with 0." 
     2 is a number belonging to the concept 
‘identical with 0 or 1’ 
     3 is a number belonging to the concept 
‘identical with 0 or 1 or 2’. . . . (Kneale and 
Kneale, 1962, p. 466) 
 

One thing lacking in the definition of 
"series" is the necessity of the concept 
names used. The presentation is therefore a 
contingent and not a necessary model of 
number theory. The only difference 
between it and intuitionist interpretations is 
that zero is absent in the latter's model, and 
numbers are understood as temporal 
instances. From the traditional 
understanding of numbers as cardinals, the 
result of Frege’s analysis would be as 
follows: "Zero is a null set; one is a set with 
an element; two is a set with two elements, 
etc." The basic limitation of the above series 
is its inability to establish a justification for 
the necessity of its concept types and the 
ground on which a series is necessarily a 
derivation of the type here presented. The 
only warrant could be the contextualization 
of numbers within the concept of "a 
controlled moment of cognition or 
realisation from zero upward." But why 
would Frege basically choose that concept 
and not another? Besides, this concept does 
not possess any privilege over any other 
concept. 

For instance, zero could mean the 
class of an actual round square in the 
physical world, and one could mean the 
class of "the German President," who ruled 
Germany during the Second World War. 
Just in that sense of looking for specific 
intentions, we can fill in all the natural 
numbers and then begin to put them in a 
series in the order of increasing magnitude. 

Consequently, the property of 
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identity would simply turn out to be one 
such instance of recognising numbers. 
Identity does not create a number. It 
matches two concepts or properties 
possessing something in common. The use 
of the concept of identity does not reduce a 
system to logic. After all, it has been used in 
physics, biology, and even in everyday 
parlance. Raatikainen (2003, p. 162) has 
drawn this implication for logicism from his 
analysis of Sternfeld’s work on "The Logistic 
Thesis" (1976, p. 147) and Rodriguez-
Consuegra’s "Russell, Gödel, and Logicism" 
(1993, p. 175). 

Besides, what does it mean to say 
that the number zero is the number that 
belongs to the concept F? What kind of 
circular definition is that supposed to be? 
Hence, before the formation of series was 
to become an issue in the essay, the 
definition of numbers itself was 
problematic. Again, how could the idea of 
"identical with one or zero" be applied in a 
real-life situation? Frege’s system makes 
numbers so complex and unrealistic. How 
do we explain to someone that a class with 
a zero always represents a one? What a 
contradiction! After all, there are millions of 
contradictions in the world, such that if they 
were referred to as numbers, the next 
number after zero would not be one but 
trillions. Again, which contradiction would 
generate one such that no other ever 
would? It is important to note that Frege 
presupposed the validity of ordinary 
arithmetic before proceeding to prove it. 
The system leaves so much to be desired, 
especially in the areas of series and number 
definition. Consequently, it fails the test set 
forth in the essay. 

Frege’s analysis would have been so 
exciting if numbers were taken as states of 
knowledge, which is what they are for him. 
But he did not recognise this feat. For 

instance, if zero had been a contradiction 
(i.e., the class of "a" contradiction), the 
recognition of that "specific instance" of 
contradiction (because there are infinitely 
many possible contradictions) would have 
been 1 and so on. Even though that 
description would have been more 
meaningful, it would still be lacking in 
necessity as a model for number theory. It 
would simply be an application of number-
theoretic truths and not their essence. 
Nevertheless, the seeming contradiction 
arising from the derivation of 1 from zero 
would have been avoided. The impetus for 
Frege to state that zero is a contradiction 
and 1 is zero, as if there is only one 
contradiction, is a type of Platonism that 
views numbers as strange entities. 

An elaborate logicist attempt to 
essentially model the concept of number 
was made by Bertrand Russell in his 
Principles of Mathematics (1992). He began 
with the conviction that the programme of 
logical analysis in mathematics had reached 
an advanced stage in the works of Peano. 
He traces the evolution of the programme 
from the reduction of all traditional pure 
mathematics to the theory of natural 
numbers and to the stage characterised by 
the reduction of this theory to a handful of 
principles and undefined terms by Peano 
(Russell, 1998, p. 5). The consideration that 
made it possible to advance beyond Peano 
and further reduce the mathematical 
theory to simpler and more general notions 
was attempted by Gottlob Frege (Russell, 
1998, p. 7). This condition included 
indications that mathematics could be 
reduced to logic or a system of simple 
general principles rather than the ones 
proposed by Peano previously. Such a 
system would itself become a model for 
Peano’s mathematics. Russell’s number 
model was an attempt to provide a logical 
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interpretation of Peano’s mathematics in 
particular and all of pure mathematics in 
general; after all, Peano’s mathematics is 
just a document or a reduced model of all 
mathematics. 

Three fundamental logical concepts 
were prominently featured in Russell's 
program: the concept of cardinal number, 
the concept of ordinal number, and the 
concept of series. The notion of cardinality 
evolved from Cantor’s development of set 
theory for the analysis of real numbers. 
According to Cantor, the cardinal number of 
a set represents the numerical capacity of 
its elements. Thus, the set of "boys living in 
Room 10" would have the cardinal number 
"three" (3) if the boys are John, James, and 
Andrew. So, a cardinal number is the 
number of elements in a set. Numbers as 
such are generalization on cardinal. They 
are classes. 

Thus, Russell argues that numbers 
are classes of classes. The classes of which 
they are classes are those with the same 
numerical strength. In his discussion of how 
numbers model Peano’s system, he writes 
as follows: 

According to my theory, the class of 
classes satisfying his axioms is the 
same as the class of classes, which 
is αo. It is most simply defined as: c 
is the class of classes u, each of 
which is the domain of some one-
one relation R (the relation of a 
term to its successor) which is such 
that there is at least one term which 
succeeds no term, every term which 
succeeds has a successor and u is 
contained in any class, which 
contains a term of u having no 
predecessors, and also contains the 
successors of every term of u which 
belongs to s (Russell, 1992, p. 127). 

 

Russell’s u and s are finite, whatever 
numbers they are. So, what Russell means 
here is that the class of finite numbers 
satisfies Peano’s mathematical axioms. This 
conception has implications for the primacy 
of cardinal numbers in mathematical 
thinking because the finite numbers in 
question are all cardinal. 

To be sure, α0 is a class of cardinal 
numbers. As a result, the ordinal property 
of numbers is a construct imposed on them. 
Russell does not also deny the fact that 
cardinal numbers are capable of ordinal 
behaviour. But he is insistent on the 
conviction that the ordinal property of 
numbers is a function of the serial 
arrangement of cardinal numbers. In that 
sense, numbers are not necessary for 
series, and vice versa. He argues for the 
independence of each from the other. 
According to him, "natural numbers are a 
particular case of . . . series, and . . . the 
whole of (mathematics) could be developed 
out of any one of such series, without any 
appeal to number . . . ."(Russell, 1992, p. 
239). Thus, Russell argues for a definition of 
progression without appealing to numbers. 

The larger implication of this 
analysis is that numbers are not necessary 
for mathematics. Any entity fulfilling the 
properties of numbers could act as a 
capable substitute. Russell believes that 
classes possess such capabilities. On the 
basis of this, he believed that mathematics 
could be reduced to logic or to logic and set 
theory. 

The contention that reduces 
numbers to classes also deprives them of 
their ordinal essence. Thus, Russell argues, 
the cardinal properties of numbers are prior 
to the ordinal properties. The ordinal is a 
serial arrangement of cardinals. Even 
though he admits that the ordinals can be 
referred to without referring to the 
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cardinal, he contends that the numerical 
property of the ordinal is a function of their 
being conceived as terms of the cardinals. 
In whichever case, the ordinals are 
numerically inessential numbers. 

So Russell arrived at Peano's 
mathematical achievement by first 
interpreting numbers in terms of classes. 
But if numbers are classes and the classes 
representing those numbers represent the 
numerical strength of first-level classes, 
how is the number of such classes to be 
determined or measured without the use of 
counting or the ordinal property? This 
question also faced Russell, but he 
dismissed it as though it were not a 
problem. According to him, the 
determination of a number as an equivalent 
class of classes is done by correlating such 
classes using the principles of one-to-one 
correspondence. It is difficult to explain 
how such a correlation would be carried out 
and the number determined without 
counting. Besides, the use of the concept of 
"one-to-one" in the definition makes it 
circular. One, for instance, is a number, and 
it is circular to try to define a number by 
itself. 

Russell recognized this circularity 
and therefore proceeded to argue that even 
though the definition appears circular, it is 
not, in fact, circular. According to him, some 
definitions are that way and are also 
unproblematic because they are simply 
clear. However, it is unclear what he means 
when he says "it is circular but not in a 
certain sense." Such definitions as "the 
number of a class is the number of the 
elements of the class" are expressions of 
improper definition. If modelling means 
providing meaning for a system, then a 
definition is an inadequate model of the 
system it purports to model if it is an 
improper definition of the system. Such is 

the fate of logicism in general and Russell’s 
logicism in particular. Russell had to face 
the problem because of his refusal to 
recognize the essentiality of series 
(counting) in mathematical modeling. 
 

Summary and Conclusion 
The central element of Peano 

Arithmetic's (PA) achievement for 
epistemology, as shown in the essay, is the 
location of the genetic foundations of 
number within the framework of a series. It 
shows that, genetically and essentially, 
numbers are ordinals and then cardinals in 
application. This achievement forms the 
legitimating myth for the evaluation of 
realism in the paper. 

Realism is shown in the essay to be 
founded on the legitimacy of referential 
semantics. This semantics is referred to as 
referential realism in this context. Referential 
realism is an advocate of the extra-mental 
existence of concepts' referents, like 
numbers. So, for realism to satisfy the PA-
type foundations of number, it must show 
some extra-mental existence of series or 
progression as its genetic basis. Such an 
assumption would lead to bizarre Platonism, 
a problem the realists want to avoid. To 
completely avoid the unfortunate Platonic 
consequences of their thesis, realism argues 
in the paper for the primacy of numbers as 
genetically cardinal, thereby making the 
ordinal property of numbers an accident of 
the arrangement of cardinals. 

In conclusion, therefore, the study 
found out that realism fails to defend the 
ordinal genesis of numbers, which genesis is 
the epistemic ground for the mathematical 
fruitfulness of PA. But most importantly, it 
was discovered that the failure of realism to 
establish the ordinal essence of numbers 
arises from the limitation of its referential 
semantics, which obviates subjective inputs 
from foundational considerations. 
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